Micropile Load Transfer Rates and Bond Stresses in the Puget Sound Region of Washington State, U.S.A.

Carole Mitchell, P.E. Wendy Mathieson, P.E. Seattle, Washington, U.S.A.

Background

- ♦ S&W began in-house research project in 2004
- Advance state of practice for load transfer rates and bond stresses
- Compare to soil types/densities and geologic units

Research Process

- Collect information from S&W and partner contractor files
- Extract ultimate or maximum frictional capacities, soil types, etc.
- Assign geologic unit and soil type based on bond zone location and elevation
- Enter into database

Soil Classification

- Unified Soil Classification System, ASTM D2487
- Majority of data: silty sand with varying amounts of gravel (SM); low plasticity clay and silt (CL and ML); slightly silty sand with varying amounts of gravel (SP-SM and SW-SM)

Major Geologic Units and Soil Types

- Deposits during glacial retreat: Recessional Outwash (Qvro) - sand and gravel
- ♦ Overridden deposits: Till (Qvt) sand, clay, and silt; Advance Outwash (Qva) sand and gravel
- Lean silt and clay, silty sand, and sand and gravels

Simplified Stratigraphy

Frictional Capacity

- ♦ Test to failure (ultimate) versus test to maximum
- ♦ Ultimate frictional capacity: engineering judgment, evaluated load/unload curves, permanent set, equipment influence, etc.
- Plotted both as load transfer rate and as bond stress

Data

- Not in a controlled lab environment
- Some bond zones isolated, many were not
- Grout mix design not evaluated
- No instrumentation on bond zones
- ♦ No sacrificial bit, hollow-core tests

Drilling Methods

Method Number	Drilling Method	General Description
1	Single-tube Advancement	Casing with drill teeth, flush with air and/or water.
2	Rotary Duplex	Simultaneous rotation and advancement of casing plus internal rod, carrying flush. Rod typically has down-the-hole hammer.
3	Rotary Percussive Concentric Duplex	Same as 2, except casing and rods percussed as well as rotated.
8	Open Hole with Air Rotary Hammer	Air rotary down-the-hole hammer. Casing may or may not be used in upper no-load zone.

Grouting Methods

Micropile Type	Grouting Method	Drill Casing
Type A	Gravity grout only	Varies from temporary casing/unlined (sub-type A1) to permanent casing in upper shaft only (sub-type A3).
Type B	Pressure-grouted through the casing during withdrawal	Varies from temporary casing/unlined (sub-type B1) to permanent casing in upper shaft only (sub-type B3).
Type D	Primary grout placed under gravity head (Type A) or under pressure (Type B), then one or more phases of secondary pressure grouting	Varies from temporary casing/unlined (sub-type D1) to permanent casing in upper shaft only (sub-type D3).

Plot Legend

Measured Maximum Transfer Rate
 Measured Ultimate Transfer Rate
 ✓ AASHTO Estimated Ultimate Transfer Rate
 FHWA Typical Bond Nominal Strength
 Measured Maximum Transfer Rate
 152-177 178-202 203 +
 Hole Diameter (mm)
 Hole Diameter (mm)

Notes: Density or consistency of material ranges from dense to very dense or very stiff to hard.

Drilling Method SM-SC

Grouting Method SM-SC

Groundwater Presence SM-SC

Conclusions

- Evaluate USCS classification and geologic unit
- Published values differ for same soil types

Conclusions

- Solution of the Glacial of the Gl
- Pressure/Post-grouting increase frictional capacity in non-overridden soil
- Some currently published ultimate values are conservative for soil in the Puget Sound Area

Future Research

- ♦ Test to Failure
- Expand Database

Acknowledgements

